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Introduction: Lower respiratory tract infections (LRTIs) contribute 

substantially to global morbidity and mortality, with bacterial and fungal 

causative agents exhibiting regional and temporal variations. Evolving 

antimicrobial resistance patterns among bacterial pathogens pose challenges 

to empirical treatment strategies. This study aimed to identify the etiological 

agents of LRTIs and characterize their antimicrobial resistance profiles. 

Methods: Bronchoalveolar lavage (BAL) fluid was obtained from adult 

patients with suspected LRTIs undergoing bronchoscopy at a tertiary care 

center in India between August 2021 and December 2022, and processed 

using standard microbiological techniques for bacterial and fungal pathogen 

identification. Antimicrobial susceptibility testing (AST) was performed on 

isolated pathogens using the Kirby-Bauer disk diffusion method. Data were 

analyzed using descriptive statistics with Microsoft Excel. Results: Among 

86 BAL samples, 33 (38.4%) yielded positive cultures, with 31 bacterial and 

2 fungal isolates. Among the bacterial isolates, Klebsiella pneumoniae was 

the most frequent organism (36.4%), followed by Acinetobacter spp. 

(18.2%). The fungal isolates were identified as C. albicans. Among K. 

pneumoniae isolates, resistance to cephalosporins ranged from 66.7% to 

100%, with the lowest resistance observed against piperacillin-tazobactam 

(25%). Among Gram-negative bacterial isolates, 60% of bacterial isolates 

were extended-spectrum β-lactamase (ESBL) producers, 36% were metallo-

β-lactamase (MBL) producers, and 48% were carbapenemase producers. 

Both C. albicans isolates were susceptible to fluconazole and voriconazole, 

while one isolate exhibited resistance to itraconazole and the other to 

ketoconazole. Conclusions: This study found that Gram-negative bacteria 

were the predominant etiological agents of LRTIs, exhibiting high resistance 

to commonly used empirical antibiotics, such as cephalosporins and 

carbapenems. Notably, resistance to aminoglycosides was lower than to 

cephalosporins and carbapenems, which may warrant further investigation 

into local prescribing patterns. These findings highlight the variability of 

antimicrobial susceptibility and emphasize the critical need for accurate 

clinical and microbiological diagnosis, along with the development of 

evidence-based institutional antibiotic policies for the empirical 

management of LRTIs. 
 

 

INTRODUCTION 

Lower respiratory tract infections (LRTIs) are a 

common cause of morbidity and mortality worldwide, 

characterized by symptoms such as cough, sputum 

production, dyspnea, wheezing, and/or chest pain or 

discomfort, typically persisting for 1–3 weeks in acute 

cases [1]. LRTIs are the leading infectious cause of death 

in low-income countries and rank among the top ten 

overall causes of mortality in high-income economies [2]. 

A 2019 Global Burden of Disease study on the global 

burden of disease attributed approximately 2.49 million 

deaths to LRTIs, positioning them as the sixth leading 

cause of mortality worldwide and the leading cause of 

death among children under 5 years of age [3]. LRTIs are 
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significant health concerns throughout the lifespan, 

frequently affecting young children and older adults [4]. 

Commonly identified pathogens in LRTIs include 

Staphylococcus aureus, Streptococcus pneumoniae, 

Pseudomonas aeruginosa, Escherichia coli, and 

Klebsiella pneumoniae, with their identification guiding 

the selection of appropriate empirical antimicrobial 

therapy [5]. Common LRTI pathogens, such as S. 

pneumoniae and K. pneumoniae utilize virulence factors, 

such as capsules for immune evasion, complicating 

treatment amid rising resistance [6]. For instance, 

encapsulated bacteria like S. pneumoniae and K. 

pneumoniae evade immune clearance, enhance 

adherence, and facilitate biofilm formation, promoting 

their persistence and proliferation. S. aureus produces 

toxins and enzymes that cause tissue damage, while P. 

aeruginosa exhibits rapid growth, toxin production, and 

flagella-mediated motility, facilitating dissemination. 

These virulence factors, combined with rising 

antimicrobial resistance due to inappropriate antibiotic 

use, agricultural practices, and the spread of resistant 

organisms, pose a significant threat to public health [7]. 

This threat is exacerbated by inappropriate antibiotic use 

before culture results, necessitating updated pathogen and 

resistance data [8].  

Despite regional variations, data from Indian tertiary 

centers are limited, necessitating this study to characterize 

local etiological agents and resistance patterns. Therefore, 

up-to-date knowledge of the causative pathogens and their 

antimicrobial susceptibility profiles is essential for 

guiding appropriate therapeutic decisions. This study 

aimed to identify the etiological agents of LRTIs and 

characterize their antimicrobial resistance patterns in 

adult patients with LRTI symptoms undergoing 

bronchoscopy with bronchoalveolar lavage at a tertiary 

care center in India. 

   

MATERIAL AND METHODS 

Study design and setting. This prospective cross-

sectional study was conducted at the Department of 

Microbiology, in a tertiary care center in central India, 

from August 2021 to December 2022. BAL fluid 

specimens were collected from adult patients in the 

Department of Respiratory Medicine who showed no 

clinical response to ≥5 days of empirical antimicrobial 

therapy and required bronchoscopy for diagnostic 

evaluation.  

Ethical considerations. The study was approved by the 

Institutional Ethics Committee at Government Medical 

College, Nagpur, India, on January 2, 2021. 

Inclusion and exclusion criteria. Adult patients (≥18 

years) with suspected LRTIs who showed no response to 

≥5 days of empirical therapy and underwent 

bronchoscopy were included, while pediatric patients 

(<18 years), pregnant women, and those with active 

pulmonary tuberculosis or immunosuppressive conditions 

were excluded. 

Sample collection. BAL fluid was collected from 

eligible adult patients admitted to the chest medicine ward 

after obtaining written informed consent. Patients were 

informed about the bronchoscopy procedure, its risks, 

benefits, and alternatives before providing consent.  

Sample processing. A total of 86 BAL fluid specimens 

were processed in the microbiology laboratory following 

standard bronchoscopy collection by respiratory 

physicians. Upon receipt, BAL fluid specimens were 

examined for color, turbidity, mucopurulent appearance, 

blood, or pigmentation. Direct smears were examined 

using Gram stain for bacteria and yeast, Ziehl-Neelsen 

stain for acid-fast bacilli, and 10% potassium hydroxide 

(KOH) mount for fungal elements.  

Culture and identification. BAL fluid specimens were 

cultured on blood agar, MacConkey agar, chocolate agar, 

and Sabouraud dextrose agar for bacterial and fungal 

identification. Blood and MacConkey agar plates were 

incubated aerobically at 37°C for 18–24 h, chocolate agar 

plates at 37°C in 5% CO2 for 24–48 h, and Sabouraud 

dextrose agar at 25°C for up to 3 weeks. Bacterial isolates 

were identified to the species level based on colony 

morphology, Gram staining, and biochemical tests 

(indole, methyl red, Voges-Proskauer, triple sugar iron, 

citrate, and urea hydrolysis).  

Antimicrobial susceptibility testing (AST). AST was 

performed on bacterial isolates using the Kirby-Bauer 

disk diffusion method on Mueller-Hinton agar, following 

CLSI M100 (2020) guidelines [9]. Antimicrobial panels, 

were selected based on organism identification. 

Interpretation of inhibition zone diameters was performed 

according to CLSI M100, 2020. 

Organism growth and antimicrobial susceptibility data 

were collected and analyzed. Descriptive statistics, 

including percentages, were generated using Microsoft 

Excel.  

 
RESULTS 

Study population characteristics. Of the 86 patients 

with clinically diagnosed LRTIs, 52 (60.5%) were 

male and 34 (39.5%) were female. The majority 

(68.6%) of patients were aged 51–70 years. Positive 

cultures were observed in 33 (38.4%) of the 86 BAL 

samples. The distribution of microorganisms isolated 

from these positive cultures is summarized in Table 1. 

Culture results. As shown in Table 1 and Figure 1, K. 

pneumoniae was the most frequently isolated organism, 

accounting for 12 (36.4%) of the 33 isolates, followed by 

Acinetobacter spp. (6 isolates, 18.2%). 
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Table 1. Distribution of microorganisms isolated from bronchoalveolar lavage fluid (n=33) 
Organism type Number of isolates Percentage (%) 

Bacteria 31 93.9 

Fungi 2 6.1 

Total 33 100 

 

 
Fig. 1. Distribution of bacterial and fungal isolates from bronchoalveolar lavage fluid 

 

Antimicrobial susceptibility. Antimicrobial 

susceptibility patterns of bacterial isolates are presented 

in Tables 2 and 3. As shown in Table 2, all S. aureus 

isolates were resistant to penicillin, and 60% were 

resistant to cefoxitin, indicating methicillin-resistant S. 

aureus (MRSA). A smaller proportion of S. aureus 

isolates showed resistance to gentamicin (20%), 

erythromycin (40%), and doxycycline (40%). All S. 

aureus isolates were susceptible to linezolid; vancomycin 

susceptibility was not tested (ND). In contrast, the single 

S. pneumoniae isolate was susceptible to penicillin, 

erythromycin, vancomycin, clindamycin, linezolid, 

levofloxacin, and trimethoprim/sulfamethoxazole (Table 

2). 

 
Table 2. Antimicrobial resistance patterns of S. aureus and S. pneumoniae isolates 

Antimicrobial S. aureus (n=5) S. pneumoniae (n=1) 

Penicillin (P) 5 (100%) 0 (0%) 
Cefoxitin (CX) 3 (60%) ND 

Vancomycin (VA) ND 0 (0%) 

Gentamicin (GEN) 1 (20%) ND 
Doxycycline (DO) 2 (40%) ND 

Erythromycin (E) 2 (40%) 0 (0%) 

Clindamycin (CD) 3 (60%) 0 (0%) 
Linezolid (LZ) 0 (0%) 0 (0%) 

Ciprofloxacin (CIP) 3 (60%) ND 

Levofloxacin (LE) ND 0 (0%) 
Trimethoprim/Sulfamethoxazole (COT) ND 0 (0%) 

ND: Not determined, as CLSI guidelines do not recommend routine testing for certain organism-antibiotic combinations. 

 

As shown in Table 3, all K. pneumoniae isolates were 

resistant to ampicillin. The lowest resistance rate for K. 

pneumoniae (25%) was observed against piperacillin-

tazobactam. P. aeruginosa isolates displayed high 

resistance rates to ceftazidime (80%) and cefepime (60%) 

but were fully susceptible to levofloxacin. Among 

Acinetobacter spp. isolates, 83.3% were resistant to 

ceftazidime and meropenem, while 66.7% were resistant 

to cefepime, piperacillin-tazobactam, and gentamicin. 

Notably, 83.3% of Acinetobacter spp. isolates were 

susceptible to minocycline. Among Gram-negative 

isolates, 60% were extended-spectrum β-lactamase 

(ESBL) producers, 36% were metallo-β-lactamase (MBL) 

producers, and 48% were carbapenemase producers, 

determined by CLSI-recommended phenotypic tests. 

Both C. albicans isolates were susceptible to fluconazole 

and voriconazole, while one exhibited resistance to 

itraconazole and the other to ketoconazole, determined by 

CLSI M44 disk diffusion testing. 

12
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Table 3. Antimicrobial resistance patterns of Gram-negative bacterial isolates (n=25) 

Antimicrobial 
K. pneumoniae (n=12) 

(%) 

P. aeruginosa (n=5) 

(%) 

Acinetobacter spp. (n=6) 

(%) 

E. coli (n=2) 

(%) 

Ampicillin (AMP) 12 (100) ND ND 2 (100) 

Cefazolin (CZ) 8 (66.7) ND ND 1 (50) 
Cefuroxime (CXM) 9 (75) ND ND 2 (100) 

Cefotaxime (CTX) 11 (91.7) ND ND 1 (50) 

Ceftazidime (CAZ) ND 4 (80) 5 (83.3) ND 
Cefepime (CPM) 10 (83.3) 3 (60) 4 (66.7) 0 (0) 

Piperacillin/Tazobactam (PIT) 3 (25) 1 (20) 2 (33.3) 1 (50) 

Amoxicillin/Clavulanate (AMC) 8 (66.7) ND ND 0 (0) 
Ampicillin/Sulbactam (AMS) ND ND 4 (66.7) ND 

Meropenem (MRP) 8 (66.7) 2 (40) 5 (83.3) 0 (0) 

Gentamicin (GEN) 7 (58.3) 2 (40) 3 (50) 0 (0) 
Amikacin (AK) 6 (50) 1 (20) 3 (50) 0 (0) 

Minocycline (MI) ND ND 1 (16.7) ND 

Ciprofloxacin (CIP) 7 (58.3) ND ND 2 (100) 
Levofloxacin (LE) ND 0 (0) 4 (66.7) ND 

Trimethoprim/Sulfamethoxazole 

(COT) 
7 (58.3) ND 2 (33.3) 0 (0) 

Netilmicin (NET) ND 1 (20) ND ND 

ND: Not determined, as CLSI guidelines do not recommend routine testing for certain organism-antibiotic combinations. 

   

DISCUSSION 

The COVID-19 pandemic (2020–2022), overlapping 

with the study period, likely reduced BAL specimen 

collection due to minimized aerosol-generating 

procedures.    

LRTIs contribute significantly to morbidity, mortality, 

and healthcare costs. This cross-sectional study examined 

the microbial profile of BAL fluid from adult patients with 

clinically diagnosed LRTIs at a tertiary care center in 

India. Our findings showed a male predominance 

(60.5%), consistent with studies by Panda et al. (2012, 

63%), Vijay et al. (2016, 66%), and Ravichitra et al. 

(2019, 71.2%) [10-12]. Male predominance in LRTIs may 

be due to higher smoking, tobacco, and alcohol use among 

men. These factors impair respiratory immunity via 

mucociliary clearance dysfunction, mucus 

hypersecretion, airway obstruction, and comorbidities. 

However, further research is needed to clarify the 

interplay of gender-related biological, behavioral, and 

social factors in LRTI susceptibility. 

Most patients (68.6%) were aged 51–70 years, 

reflecting increased LRTI susceptibility in older adults. 

Increased LRTI susceptibility in this age group is due to 

age-related declines in immune and pulmonary function. 

Chronic respiratory conditions (e.g., COPD, emphysema, 

bronchiectasis, post-tuberculosis sequelae) further 

predispose this population to Gram-negative infections. 

Cumulative antibiotic exposure in older adults may drive 

antibiotic-resistant pathogens, complicating LRTI 

management. 

Of 86 BAL specimens, 38.4% yielded positive cultures, 

consistent with Padmaja et al. (2021, 38.52%), Dickson et 

al. (2014, 39.1%), and Kneidinger et al. (2013, 32.4%) 

[13-15]. Of the isolates, 93.9% were bacterial and 6.1% 

were fungal. These findings align with Ramana et al. 

(2013; 90.3% bacterial, 9.7% fungal) and Sarmah et al. 

(2016; 82.6% bacterial, 17.4% fungal) [16, 8]. Gram-

negative bacteria predominated in LRTIs, consistent with 

Palewar et al. (2021), Gebre et al. (2021), and Padmaja et 

al. (2021) [13, 17, 18]. These studies reported 76–94% 

Gram-negative bacilli and 5.8–24% Gram-positive cocci.  

K. pneumoniae was the most frequently isolated 

organism, followed by Acinetobacter spp. and S. aureus. 

These findings align with Padmaja et al. (2021) and 

Madhavi et al. (2012), who identified K. pneumoniae and 

P. aeruginosa as predominant LRTI pathogens [13, 19]. 

This predominance of Gram-negative pathogens informs 

empirical antimicrobial therapy selection, as highlighted 

by recent guidelines [20]. Clinicians must monitor these 

etiological patterns to ensure appropriate antibiotic use in 

LRTI management. Conventional culture-based methods 

used in this study may limit detection of fastidious or non-

culturable organisms, highlighting the role of microbiome 

analysis [21]. 

Among S. aureus isolates, resistance was most 

frequently observed against penicillin, followed by 

cefoxitin and ciprofloxacin, and then clindamycin. Lower 

resistance to gentamicin (20%) was observed in S. aureus 

isolates. Notably, cefoxitin resistance, which is suggestive 

of methicillin resistance, was observed in 60% of S. 

aureus isolates. Hoban et al. (2003), Bajpai et al. (2013), 

and Rajkumar et al. (2016) reported MRSA rates of 

43.7%, 55.6%, and 48.2%, respectively [22-24], 

indicating high MRSA prevalence. All S. aureus isolates 

were susceptible to linezolid, consistent with findings 

from Lee et al. (2018) and Bajpai et al. (2013) [21, 22]; 

vancomycin susceptibility was not tested in our isolates 

[23, 24]. Santella et al. (2021) reported that S. aureus 

isolates were 84% resistant to penicillin but fully 

susceptible to linezolid [25]. 

The antimicrobial susceptibility profile of K. 

pneumoniae isolates showed high resistance, consistent 

with Kumar et al. (2013) and Bajpai et al. (2013) [23, 26]. 

Kumar et al. (2013) and Bajpai et al. (2013) reported K. 

pneumoniae resistance rates of 7.3% and 28.9% for 

amikacin, 58.7% and 39.6% for gentamicin, and high
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resistance to β-lactam agents [23, 26]. A study by Khan et 

al. (2015) reported a 70% gentamicin resistance rate in K. 

pneumoniae [27]. High β-lactam resistance in K. 

pneumoniae raises concerns about the efficacy of 

empirical LRTI treatments, driven by molecular 

resistance mechanisms [28]. Lower gentamicin resistance 

(58.3%) in K. pneumoniae compared to Khan et al. (2015, 

70%) may reflect reduced empirical use [27]. These 

resistance patterns highlight the need for ongoing 

surveillance and local susceptibility data to guide 

empirical antibiotic selection and reduce resistance. 

High resistance in Acinetobacter spp. isolates aligns 

with Chung et al. (2011) and Shete et al. (2010) [29, 30]. 

Chung et al. (2011) reported resistance rates of 78.2% for 

ceftazidime, 75.9% for ampicillin-sulbactam, and 76.7% 

for piperacillin-tazobactam in Acinetobacter spp. [29]. 

Shete et al. (2010) reported 71.4% ceftazidime and 42.8% 

amikacin resistance, while Sohail et al. (2016) found 

99.6% ampicillin-sulbactam, 98.3% cefepime, and 99.2% 

ceftazidime resistance in Acinetobacter spp. [31]. High 

resistance in Acinetobacter spp. is due to its ability to 

acquire and disseminate resistance genes and persist in 

hospital environments, consistent with recent multicenter 

data [32]. P. aeruginosa susceptibility patterns align with 

Tripathi et al. (2011), who reported higher ceftazidime 

and cefepime resistance and lower amikacin and 

meropenem resistance [33]. Ramana et al. (2013) reported 

higher cephalosporin resistance and lower 

aminoglycoside and carbapenem resistance in Gram-

negative bacteria [16]. P. aeruginosa’s ability to acquire 

resistance mechanisms highlights the risks of injudicious 

antibiotic use, promoting resistant strain emergence. 

Among Gram-negative isolates, 15/25 (60%) were 

ESBL producers, 36% were MBL producers, and 48% 

were carbapenemase producers, determined by CLSI-

recommended phenotypic tests. These findings align with 

Gupta et al. (2017), who reported 54.5% ESBL and 22.1% 

MBL producers among Gram-negative isolates [34]. 

Similarly, Radhika et al. (2015) found that 43.5% of K. 

pneumoniae isolates produced either MBL or 

carbapenemase enzymes [35]. High ESBL, MBL, and 

carbapenemase prevalence in Gram-negative isolates 

underscores the need for strategies to combat 

antimicrobial resistance, as evidenced by recent 

surveillance data [36]. 

Both C. albicans isolates were susceptible to 

fluconazole and voriconazole, per CLSI M44 testing. 

However, one C. albicans isolate was resistant to 

itraconazole and another to ketoconazole, indicating 

potential antifungal resistance, consistent with recent 

Indian data [37]. 

Gram-negative bacilli, primarily K. pneumoniae and 

Acinetobacter spp., are the leading LRTI pathogens in our 

setting. We observed high resistance to empirical 

antibiotics, including third-generation cephalosporins and 

carbapenems. Aminoglycoside resistance was lower than 

cephalosporin and carbapenem resistance. ESBL, MBL, 

and carbapenemase production are major mechanisms of 

β-lactam resistance. Understanding these resistance 

mechanisms is crucial to avoid unnecessary β-lactam use 

and mitigate cross-resistance. Incorporating β-lactam/β-

lactamase inhibitor combinations, such as piperacillin-

tazobactam, may improve empirical LRTI treatment 

outcomes. Variable LRTI etiology and resistance patterns 

require tailored antimicrobial therapy. Collaboration 

between clinicians and microbiologists is essential for 

monitoring microbial trends and antibiotic susceptibility 

patterns. Regular research is crucial to update empirical 

treatment guidelines, optimizing patient care and reducing 

resistance. 
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